Measure Theory with Ergodic Horizons Lecture 23

Classical Pointmix Ecgodic Theorem (Birkhoff 1931). Let (X, B, p) be a probability space. A (8,8)-
neasurable p-preserving transformation T is ergodic iff for each fe L'(X, p) and for a.e. x EX,
lim (average f over
$$\{x, Tx, T^2x, ..., T^nx_i\}$$
) = $\int f dJ^i$.
Auf(x) := $\frac{1}{h+1} \sum_{i=0}^{n} f \circ T^i(k)$
T 1 0 -3 2.1
X Tx TX TX TX TX

Applications. (a) Irrational colations. Let de [0,1) be irrational and Ty: S'-> S' be the rotation by the angle 2010. It's clear that To preserves the Haar measure on SI, i.e. defined by nee-lengths (= push-torward of Lebusgue from top) The and the to erry . We also know from the J920 lemma that The ic ergodic. Let's apply the ptwise erg. Mun. to 18 for some set BSS! Thue $\int \mathbf{1}_{\partial} d\mu = \mu(B)$, while $A = \mathbf{1}_{B}[x] = \frac{1}{2} \sum \mathbf{1}_{B}(T_{a} \times) =$ $= \frac{1}{|1\times, T_{a}\times, T_{a}\times, T_{a}\times, MB|} = \frac{1}{|1\times, T_{a}\times, T_{a}\times, \dots, T_{a}\times, MB|} = \frac{1}{|1\times, T_{a}\times, \dots, \dots, \dots, \dots$ The theorem says that the forgenery of encountering a point of B as & moves by Tx converses to the proportion of the whole spice S' occupied by B, i.e. The number p(B).

(b) Let
$$k \in \mathbb{N}^{+}$$
 and let v be a prob. measure on $k := \{0, 1, ..., k-1\}$. Let $\mu := v \mathbb{N}$,
so μ is a Bernaulli measure on $k^{\mathbb{N}}$. Let $S_k : k^{\mathbb{N}} \to k^{\mathbb{N}}$ denote the difficient
 $S_k(x_0, x_1, x_2, ...) = (x_1, x_2, ...)$.

Contribution $p : (x_1,$

Let
$$A$$
 be any measurable S_{k} -invariant set. Then $\lim_{h\to\infty} \mu(S_{k}^{-n}(A) \cap A) = \mu(A)^{2}$.
But $S_{k}^{-h}(A) = A$ by invariance, so $\mu(S_{k}^{-n}(A) \cap A) = \mu(A \cap A) = \mu(A)$, thus $\mu(A) = \mu(A)^{2}$.
Hence $\mu(A) = 0$ or Δ .

We apply the ptrice expedic theorem to $\underline{1}_{[a]}$, for as k. Then $\underline{1}_{[a]}dy = \mu(tas)$: $\nu(tas)$. On the other hand, $A_{n} \underline{1}_{[a]}(x) = \frac{1}{n+1} \ge \underline{1}_{[a]}(S_{k}^{n}(x)) = \underbrace{1}_{k+1} \# of a in = \frac{1}{(x_{0}, x_{1}, ..., x_{n})}$

Applying the physice e.g. theorem to
$$\prod_{\substack{[i] \ i \neq i}} \text{ for } i \in \{0, 1, ..., 9\}$$
, we see that
 $\lim_{x \to \infty} (f_{\text{represency}} \circ f_i \text{ among the first u+1 digits of } x) = \lambda ((\frac{i}{10}, \frac{i+1}{10})) = \frac{1}{10}$ for a.e. $x \in [0, 1)$,
as expected.

Local-clobal bridge. Let T be a measure preserving transformation on a probability space
(X,μ). Ut FGL⁽(X,μ) and N ∈ N. Then
(a) If dμ = J Anf dμ, where Anf =
$$\frac{1}{n+1}\sum_{i=0}^{n}$$
 foTⁱ.
(b) The 2.2 frick: Fix 2, d > O (e.g. d=2). If Z ∈ X has measure ≤ 2.2, then
on a set X' ⊆ X of measure z = -d, the average An 1 z (x) < 5 for all x ∈ X!.
Proof. (a) was innedicate from If dμ = foT dμ, done in HW, and (b) follows from (c)
as follows: by (c), we have $zd = \mu(z) = \int 1_{z} d\mu = \int Au \int_{z} d\mu = \sum \mu(ix ∈ X = Au \int_{z}^{H} z i)$
where the last inequality is (heby shev. Hence $\mu(ix ∈ X = Au \int_{z} (x) z i) ≤ d$, so take
 $\chi' := ix ∈ X: Au \int_{z} < i$.

Classical Pointwise Ecgodic Theorem (Birkhoff 1931). Let (X, B, p) be a probability space. A (8,8)-
neasurable p-preserving transformation T is ergodic iff tor each
$$f \in L(X, p)$$
 and for a.e. $x \in X$,
lim (average f over $hx, Tx, T^2x, ..., T^nx_1^2) = \int f dJ^2$.
Aut (x) := $\frac{1}{h+1} \sum_{i=0}^{n} f \circ T^i(x)$
 $\frac{1}{x} \frac{1}{Tx} \frac{1}{Tx} \frac{1}{Tx} \frac{1}{Tx} \frac{1}{Tx}$

